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The impact of the COVID-19 pandemic has been dramatic worldwide, with China, Italy,
and now US at its epicenter. Researchers and clinicians are studying and testing different
approaches in the attempt to prevent the infection and minimize its severity. Major efforts
are focused on optimizing mechanical ventilation, antiviral, and supportive treatment;
however, the role of heparin and low molecular weight (LMW) heparin in this setting has
been largely overlooked. This review summarizes the available evidence about the role of
heparan sulfate as a key entry mechanism for SARS-CoV-2; the efficacy of heparin and
LMW heparin in counteracting its entry into the cell, the recent experimental findings
obtained in in vitro studies using the LMW heparin enoxaparin Inhixa®, the role of heparin
and LMW heparin in modulating the cytokine storm, and the evidence for the use of LMW
heparin in the prevention and treatment of the thromboembolic complications of COVID-
19. The available evidence suggests that LMW heparin appears as a promising tool in the
treatment of COVID-19. Whether its systematic use is associated with a reduction in
complications and ultimately mortality of these patients is being tested in several studies
starting worldwide.

Keywords: enoxaparin, coronavirus, COVID-19, thromboembolism, induced thrombosis inflammation
INTRODUCTION

The spread of new coronavirus (SARS-CoV-2) has been recently declared a pandemic by the World
Health Organization (WHO). Its dramatic impact is straining healthcare resources at their limit
worldwide, first in China, then in western countries, with UK, Italy, and more recently US being the
countries with the largest number of deaths to date. Researchers and clinicians are frantically
studying and testing different approaches in the attempts to prevent the infection, minimize the
severity, and prevent its complications (ICOTREG Group, 2020).
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Four steps appear fundamental in the clinical outcome of
COVID-19 infected patients: First, the cell infection by the virus;
second, the so-called cytokine storm, i.e., the inflammatory
response triggered by the infection; third, the pulmonary
infiltration leading to a significant reduction in oxygen
saturation; and lastly, the thromboembolic complications of the
inflammatory response, contributing to rapid deterioration of the
clinical status and death. Moreover, data are emerging indicating
that diffuse bilateral pulmonary inflammation observed in
COVID-19 is associated with a novel pulmonary-specific
vasculopathy, which has been termed pulmonary intravascular
coagulopathy as distinct to disseminated intravascular coagulation
(Fogarty et al., 2020).

Mechanical ventilation and respiratory assistance remain the
cornerstone treatment for patients with severe respiratory
distress leading to death, especially among the elderly. On top
of that, three main approaches can be envisioned to minimize the
clinical consequences of COVID-19 infection: (a) prevention of
virus entry into the cell and/or its replication, (b) modulation of
the cytokine storm by anti-immune agents, and (c) prevention
of the thromboembolic complications.

Clinical evidence about the efficacy of currently used
pharmacological treatments remains scanty. At present, protocols
developed in specialized centers have included the use
of chloroquine and hydroxychloroquine with negative results,
anti-virals such as lopinavir/ritonavir with negative results,
and remdesivir, the latter with promising results and anti-
inflammatory agents such as tocilizumab and desametasone with
promising results. However, the search for innovative treatment
approaches remains crucial for optimizing patient treatment. One
overlooked research area is the attempt to inhibit the entry of SARS-
CoV-2 into the cell, the very first step leading to the vicious circle
described above.

This review will focus on: (a) the experimental evidence about
the role of heparan sulfate as a key entry mechanism for SARS-
CoV-2, (b) the efficacy of heparin and low molecular weight
(LMW) heparin in counteracting its entry into the cell, (c) the
recent experimental findings obtained in in-vitro studies using
the LMW heparin enoxaparin (Inhixa®), (d) the role of heparin
and LMW heparin in modulating the cytokine storm, and (e) the
evidence for the use of LMW heparin in the prevention and
treatment of the thromboembolic complications of COVID-19.

The available, albeit preliminary, evidence suggests that
heparin in general and Inhixa® in particular appear as a
promising additional tool in the treatment of COVID-19.
HEPARAN SULFATE AS AN ENTRY
MECHANISM FOR SARS-COV-2

Virus tropism not only depends on its interaction with entry
receptor but is also modulated by other factors, like attachment
receptors, protease availability, and the activity of pathways
responsible for internalization and trafficking of virus particles
(Wickramasinghe et al., 2011; Promkuntod et al., 2013).

Many pathogens take advantage of the glycosaminoglycans
heparan sulfate as a means to adhere and gain access to cells.
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Several years ago, the critical role of heparan sulfate has been
clearly documented by de Haan et al. (2005). These authors have
shown that murine hepatitis virus, a member of the
betacoronavirus subfamily, acquires the ability to infect human
cells by successive culture in infected cells thanks to the
mutation, which confers the virus the ability to attach to
heparan sulfate proteoglycan. Later studies confirmed that
human coronavirus NL63 take advantage of heparin sulfate to
attach to target cells through a structural M protein (Milewska
et al., 2014; Milewska et al., 2018).

Recently, Mycroft-West C. et al. evaluated the interaction
between the SARS-CoV-2 Spike S1 protein receptor binding
domain (SARS-CoV-2 S1 RBD) and heparin and were able to
show an interaction between the recombinant surface receptor
binding domain and the polysaccharide, thus indicating the
strong potential of repurposing heparin as an antiviral agent.
EFFICACY OF HEPARIN IN
COUNTERACTING THE ENTRY OF SARS-
COV-2

Heparan sulfate (HS) and heparin share similar structural
characteristics, both of them are polysaccharides formed by
repeated disaccharide covalently linked by uronic acid
and acetylglucosamine with variable chain length and number
of sulfate groups (average heparin disaccharide contains
approximatively 2.7 sulfate groups, whereas heparan sulfate >1
sulfate group per disaccharide unit). In higher organisms, they
can be found primarily on the cell surface or in the extracellular
matrix, attached to a protein core. Heparin is a highly acidic
polymer and its biological effects depend on both specific and
nonspecific ionic interactions. The anticoagulant activity is
related to the presence of a specific pentasaccharide sequence
present in approximately 20–30% of commercially available
heparin. The specific pentasaccharide sequence binds and
potentiates the effect of antithrombin a naturally occurring
anticoagulant, which can inhibit several serine proteases of the
coagulation system, primarily FIIa (thrombin) and FXa. More
recently, a heparin octasaccharidic sequence obtained by
chemoenzymatic synthesis, in which glucuronic acid is
replaced with sulfated iduronic acid, was shown to similarly
bind to and activate antithrombin, thus paving the way for the
development of heparin-like drugs that be obtained by a chemo-
enzymatic approach (Elli et al., 2020).

However, heparin chains can have non anticoagulant effects
by binding “nonspecifically” but also specifically to more than
100 proteins (Young, 2008). Significant clinical and basic science
literature shows that heparin also possesses anti-inflammatory
effects as it can modulate the function and activity of mediators
of the immune response, acute phase and complement proteins,
and growth factors. The activity of several proteins acting as
mediators of inflammation, including CD11b/CD18, eosinophil
cationic protein, IL-8, neutrophil elastase, major basic protein, P-
and L-selectin, platelet growth factor 4, and stromal-
derived factor 1a is modulated by heparin (Hao et al., 2019;
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Hippensteel et al., 2020). A direct interaction of heparin with
vascular endothelial cells (ECs), reducing recruitment of the
innate immune system and inhibiting neutrophil activation,
has also been shown. The anti-inflammatory effects of heparin
and its constituent heparan sulfate glycosaminoglycan fragments
are attributable to two general mechanisms: (i) inflammation
dampening through interaction with proinflammatory mediators
and (ii) prevention of the adhesion and infiltration of
inflammatory cells to the diseased area (Hao et al., 2019;
Hippensteel et al., 2020).

However, heparin utilization as anti-inflammatory agent has
been hindered by the fear of bleeding, but the pleiotropic effects
of heparin and its related compounds may have greater
therapeutic potential than compounds directed against a single
target due to the existing connection between inflammation,
atherogenesis, thrombogenesis, and cell proliferation.

A potential role of heparin in counteracting the interaction of
virus with host cell has been already documented. It competes
with the herpes simplex virus for host cell surface glycoproteins
to limit infection (Shukla and Spear, 2001) and it prevents cell
death of human neural progenitor cells induced by Zika virus
(Ghezzi et al., 2017).

The possibility that the infection by a SARS-CoV strain can be
inhibited by heparin was demonstrated in an experiment
conducted on the sputum specimen of an Italian patient infected
by SARS (Vicenzi et al., 2004). The authors documented that the
virus firstly binds to the abundant HS in the extracellular matrix,
increasing its density on the cell surface, and promoting the
recognition to its ACE2 receptor. Heparin (100 µg/mL) added
30 min before infection of Vero cells with SARS-CoV reduced the
formation of plaques by 50%.

More recent data indicated that the human coronavirus NL63
similar to SARS-CoV-2 S1 RBD undergoes conformational
change upon heparin binding, and this decreases the adhesion
and hence the interaction with the ACE receptors. Since the
interaction with heparan sulfate acts to facilitate ACE receptors
binding by virus, it is also possible to block virus cell entry by
modulating ACE 2 receptors, and recently Hoffmann et al.
(2020) have shown that SARS-CoV-2 cell entry is blocked by
camostate mesylate, a protease inhibitor acting on ACE2
and TMPRSS2.

Mycroft-West C. J. et al. showed that the addition of heparin
to Vero cells at concentration spanning therapeutic use can
inhibit SARS-Cov2 invasion between 44 and 80%. Heparin and
low molecular weight heparin both bind to the Spike (S1) protein
receptor binding domain, inducing conformational change. A
hexasaccharide is required for conformational change. These
findings are implied in the process of repurposing heparin a first
line therapeutic agent as an antiviral agent and tailor made GAG
based antiviral agent.

Yang et al. (2020) also showed by native mass spectrometry that
both short (pentasaccharide) and relatively long (eicosasaccharide)
heparin oligomers form 1:1 complexes with S1 protein receptor
binding domain, supporting the existence of a single binding site.
This association induces a conformational change with an
important reduction of the ability to associate with ACE2.
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Heparin destabilizing effect is greater with the longer chains
because of the electrostatic repulsion between the low-pI ACE2,
and the heparin segments are not accommodated on the receptor
binding domain surface.

Spike protein binding and infection by SARS-CoV-2 virus is
potently blocked by unfractionated heparin, non-anticoagulant
heparin, treatment with heparin lyases, and purified lung
heparan sulfate (Clausen et al., 2020).

Thus, the available evidence indicates that heparan sulfate has
a central role in the adhesion of the virus to the cell surface and
that heparin leads to a conformational change of the SARS-CoV-
2 surface protein and therefore limits its interaction with the
ACE2 receptor, thus inhibiting SARS-CoV-2 infection (Kim
et al., 2020). Heparan sulfate manipulation or the inhibition of
viral adhesion by exogenous heparin can constitute new
therapeutic opportunities (Kim et al., 2020).
ROLE OF ENOXAPARIN IN MODULATING
THE CYTOKINE STORM

There is strong evidence indicating that a cytokine storm occurs
during the evolution of SARS-CoV-2 infection. The development
of cytokine storm leads ultimately to the necrosis of epithelial
cells, increased permeability of vascular cells, and abnormal
cellular and humoral immunity, eventually resulting in acute
lung injury, acute respiratory distress syndrome (ARDS), and
death (Arabi et al., 2017).

Evidence obtained in Chinese patients points to IL-6 release
as a main trigger (Wan et al., ; Chen et al., 2020). In the study by
Wan et al. on 123 patients, increased levels of IL-6 were observed
in 76.2% of the patients with severe disease (16 of 21) compared
with 30.4% of the patients with mild disease (31 of 102). Similar
results were obtained in the 29 patients studied by Chen et al. In
both studies, other cytokines including IL-1b, IL-8, IL-10,
TNF-a, and hs-CRP were not significantly different in patients
with mild vs. severe disease.

Several studies documented a role of heparin in modulating
IL-6 release based on the initial observation of the heparin-
binding properties of IL-6 (Mummery and Rider, 2000). For
example, in vitro experiments demonstrated that the production
of IL-6 and IL-8 induced by LPS is inhibited by heparin in
human EC (Li et al., 2015) and by the non-anticoagulant fraction
of enoxaparin in trypsin-treated pulmonary epithelial cells
(Shastri et al., 2015).

Studies in vivo models indicated that the production of IL-6
and TNFa from alveolar macrophages induced by LPS can be
attenuated by nebulized heparin (Chimenti et al., 2017).

Clinical data on the effect of enoxaparin on IL-6 level have been
already documented several years ago (Zenáhlıḱová et al., 2010).
However, very recent evidence suggests that LMWheparin has the
potential to relieve inflammation in COVID-19 patients: in a
retrospective cohort study, Shi et al. demonstrated that the use of
LMW heparin was associated with a higher percentage of
lymphocytes and, most importantly, a significantly lower level
September 2020 | Volume 11 | Article 579886
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of IL-6, suggesting a key role of LMW heparin in modulating
inflammatory response (Shi et al., 2020).

Moreover, despite the mechanism underlying COVID-19
pulmonary vasculopathy is still unclear; the expression on both
type II pneumocytes and vascular EC within the lungs of the
ACE2 receptor exploited by COVID-19 supports the possibility
of direct pulmonary EC infection, activation, and/or damage
(Varga et al., 2020). Furthermore, the cytokine storm associated
with COVID-19 infection will have major impacts upon
thrombin generation and fibrin deposition within the lung
(Zhou et al., 2020).
ENOXAPARIN AND VENOUS
THROMBOEMBOLIC (VTE)
COMPLICATIONS IN COVID-19 INFECTION

WHO’s attention has been drawn to the vascular complications
that accompany COVID-19 infection when developing severe
acute respiratory syndrome (SARS). In a specific section, the
interim guidance recently released (WHO, 2020) recommends
thromboprophylaxis with either unfractionated or low molecular
weight heparin (LMWH), since, as discussed earlier in this
review, acute infections are strong prothrombotic stimuli and
these patients are at increased risk of venous thromboembolism
(VTE). Abnormal coagulation has been reported in a multicentre
retrospective study in Chinese patients hospitalized with severe
disease (Tang et al., 2020) in whom elevated D-dimer >1 gr/L was
associated with in-hospital death, even after multivariate
adjustment for other variables. In another study (Deng et al.,
2020), non-survivors had significant higher levels of D-dimer,
and 71% met the clinical criteria for disseminated intravascular
dissemination (DIC).

Severe and critically ill COVID patients with prolonged
immobilization are inherently at high risk of VTE, and
pulmonary embolism (PE) should also be considered in those
with clinical deterioration with hypoxia and hemodynamic
instability. However, the optimal thromboprophylaxis regimen
in hospitalized patients with COVID-related illness is unknown
(Driggin et al., 2020). Standard LMWH prophylaxis may be
insufficient, especially in the ICU patients who are characterized
by a dynamic day-to-day variation both of thromboembolic and
bleeding risk. Monitoring of anti-Xa activity may be considered
when LMWH is used in these patients (Duranteau et al., 2018),
and yet, failure rates with standard pharmacological prophylaxis
with LMWH or UFH may not be negligible (5–15%) (Boddi,
2017). Current studies will clarify the ideal regimen in the
COVID-19 clinical setting. This is even more important in
light of the very recent observation of a high incidence (31%)
of thrombotic complications in ICU patients with COVID-19
infections (Klok et al., 2020). The authors reinforced the
recommendation to “strictly apply pharmacological thrombosis
prophylaxis in all COVID-19 patients admitted to the ICU, and
to increase the prophylaxis towards high-prophylactic doses,
even in the absence of randomized evidence”.
Frontiers in Pharmacology | www.frontiersin.org 4
So far only data regarding observational retrospective studies
of either LMWH or UFH for COVID-19 related illness are
available, with mixed results (Hasan et al., 2020).

There are least 14 ongoing randomized clinical trials
registered in ClinicalTrials.Gov, and they are all open label
comparing standard prophylactic LMWH or UFH doses vs.
intermediate therapeutic LMWH doses in patients hospitalized
for SARS-CoV-2 in either general wards or intensive care units
(Marietta et al., 2020).

The results of these studies are awaited to draw firmer
conclusions on the role of heparin in SARS-CoV-2 related illness.
CLINICAL IMPLICATIONS AND
CONCLUSIONS

The experimental and clinical evidence summarized in this
review suggests a strong rationale for testing the use of
enoxaparin in patients with COVID-19 infection. Table 1
summarizes the potential beneficial effects. Whether a
systematic use of this treatment is associated with a reduction
in complications and ultimately mortality of these patients will
be defined when the results of several studies starting worldwide
will be available. Although randomized clinical trials remain the
ideal setting to evaluate safety and efficacy of novel treatments,
the threat posed by COVID-19 requires that clinicians are able to
collect data in real-world setting.

In that respect, the fact that LWMheparin is already recommended
as a preventive measure of venous thromboembolism allows clinicians
to collect clinical data in real-world and help answering this crucial
question for the optimal management of COVID-19 patients.
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TABLE 1 | Potential effects of enoxaparin in the COVID-19 infection setting.

• Prevention of infection by decreasing virus cell entry and hence viral load
• Reduction of IL-6 release associated with cytokine storm
• Prevention of activation of coagulation cascade
• Prevention of venous thromboembolism
• Prevention and treatment of thrombosis of small and middle size vessels

leading to lung failure
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